Junio 2015	4 Dadas las rectas $r \equiv \begin{cases} x+y+z-3=0 \\ 2x-y+z-2=0 \end{cases}$ $\forall s \equiv \frac{x-1}{2} = y-1 = \frac{z-1}{3}$ se pide:	
	a) Determinar su posición relativa.	(1,25 puntos)
	b) Calcular el ángulo que forman ambas rectas.	(1,25 puntos)
Junio 2015	4. Dudos los planos ni 1 x 1 y 1 z - 0 y niz - 0 se plac.	
	c) Para $m=2$, obtener las ecuaciones paramétricas de la recta intersecciplanos.	ión de ambos (1 punto)
Junio 2014	4 Dados los puntos $A(-1,0,3)$, $B(2,4,1)$ y $C(-4,3,1)$:	
2014	 a) Estudiar si los puntos A, B y C están alineados. b) Hallar la ecuación de la recta paralela al segmento AB y que pasa por C como intersección de dos planos. 	(1,25 puntos)
Junio 2014	4 Determinar el valor de a para que la recta r de ecuación $r \equiv \begin{cases} x-y+2z \\ 2x+y+z \end{cases}$	= 2 = 3 sea
2014	paralela al plano $\beta \equiv x - ay + 10z = -3$.	(2,5 puntos)
Julio 2014	4 Sea P el punto de coordenadas $P(1,0,1)$ y r la recta de ecuación $r\equiv \left\{ egin{align*} x + \ x = \ \end{array} ight. $	y - z = 0 $2z = 1$
	 a) Hallar la ecuación en forma continua de una recta que pase por el punto paralela a la recta r. b) Hallar la ecuación general de un plano que pase por el punto P y conter 	(1,25 puntos)
Julio 2014	4 Determinar la posición relativa de los siguientes planos: $\beta_1 \equiv \begin{cases} x = -1 + 3\lambda - 2\mu \\ y = 4 + \lambda \\ z = -2 + 2\lambda - 5\mu \end{cases}, \beta_2 \equiv x + y + z = 2, \beta_3 \equiv \begin{vmatrix} x - 2 & 1 & 2 \\ y + 1 & 2 & 3 \\ z & 1 & 1 \end{vmatrix} = 0$	= 0 (2,5 puntos)
Sept. 2012	4. Estudiar la posición relativa de las rectas $r: \frac{x-2}{3} = \frac{y+3}{-2} = \frac{z}{5}$ y $s: \begin{cases} 4x-2y+z=0\\ 2x-y+z=5 \end{cases}$	
	(explicar el procedimiento utilizado).	(2'5 puntos)
Sept 2012	4. Dado el plano $\pi: \begin{cases} x = -1 + 3\lambda - 2\mu \\ y = 4 + \lambda \end{cases} (\lambda \in R) (\mu \in R) \text{y dado el punto } \mathbf{P}(0),$ obtener las ecuaciones en forma continua, en forma paramétrica y como intersección de do	
	r que pasa por P y es perpendicular al plano π , explicando el procedimiento utilizado.	2'5 puntos)
Junio 2011	4 Dadas las rectas secantes $r: \frac{x-2}{-1} = \frac{y-5}{2} = \frac{z-1}{1}$ y $s: (x, y, z) = (1, -1, -1)$ a) Calcular su punto de intersección. (1'75 p.) b) Hallar ecuación del plano que las contiene. (0'75 p.)	0)+\(\lambda(-1, 6, 2)\)